

## 2017 Distribution Reliability Report

May 7, 2018



#### IEEE 1366

| Indices                                                                                       | Description                                                                                                                                                                                                                                                                                |
|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $SAIDI = \frac{\sum (r_i \times N_i)}{N_T}$                                                   | System Average Interruption Duration Index – the total duration of an interruption for the average customer during a given time period (minutes).                                                                                                                                          |
| $CAIDI = \frac{\sum (r_i \times N_i)}{\sum N_i}$                                              | <u>Customer Average Interruption Duration Index</u> – the average amount of time taken to restore service (minutes).                                                                                                                                                                       |
| $SAIFI = \frac{\sum N_i}{N_T}$                                                                | System Average Interruption Frequency Index – the average number of times that a system customer experiences an outage during the time period being studied (number).                                                                                                                      |
| $ASAI = \left[1 - \left(\frac{\sum(r_i \times N_i)}{(N_T \times T)}\right)\right] \times 100$ | <u>Average System Availability Index</u> - the total number of customer hours that service was available during the time period being studied to the total customer hours demanded and is calculated using the following formula (percent). [Note: $r_i$ is in hours for this calculation] |
| $T_{MED} = e^{(\alpha + 2.5 \times \beta)}$                                                   | $\underline{T}_{\underline{MED}}$ – a method to identify single day events which inclusion would skew the indices such that a true evaluation of the reliability indices would be imprecise.                                                                                               |
| Performance                                                                                   | SAIDI X SAIFI (not an IEEE 1366 calculation)                                                                                                                                                                                                                                               |

Where  $r_i$  is the restoration time in minutes,  $N_i$  is the total number of customers interrupted,  $N_T$  is the total number of customers served, T is the time period studied,  $\alpha$  is the log-average of daily SAIDI values, and  $\beta$  is the log-standard deviation of the study data.

- Study Period: Jan 1, 2017 to Dec 31, 2017950 events(595 in 2017)
- Indices are calculated based on IEEE 1366 Standard for Reliability Indices after classification based on IEEE 1782 Standard by Cause Code and Equipment Code
- Reliability indices calculated on system, substation, and feeder service levels
- Top 5 cause and equipment codes were identified across system, substation, and feeder service levels

# The #1 cause: Squirrels

199/213

#### Squirrels & Electric Distribution





"Wildlife near power equipment is the most common cause of outages at public power utilities and the failure of overhead equipment is the second most common cause, according to the American Public Power Association's latest annual survey on distribution system reliability."

"Since a utility pole is similar to a tree, squirrels frequently climb poles." the report said. "The heat emitted by electric lines can attract a squirrel, particularly in cold weather."

## Top 5 - 2017

| Rank | Cause Code | Description                                                 | Events |
|------|------------|-------------------------------------------------------------|--------|
| 1    | 600        | Animals: Small animal/bird                                  | 213    |
| 2    | 110        | Planned Outage: Maintenance                                 | 179    |
| 3    | 400        | Maintenance: Decay/age of material/equipment                | 98     |
| 4    | 500        | Weather: Lightning                                          | 86     |
| 5    | 300        | Equip or Installation/Design: Material or equipment failure | 78     |

| Rank | Equipment Code | Description                                                             | Events |
|------|----------------|-------------------------------------------------------------------------|--------|
| 1    | 999            | No equipment damaged: No damaged equipment                              | 283    |
| 2    | 360            | OH Line Cond & Devices: Fuse cutout (damaged, malfunction, maintenance) | 253    |
| 3    | 510            | Line Transformer: Transformer fuse or breaker                           | 119    |
| 4    | 600            | Secondary & Services: Secondary or service conductor                    | 50     |
| 5    | 500            | Line Transformer: Transformer, bad                                      | 45     |

#### Top 5 2017 Cause Codes



#### Top 5 2017 Cause Codes

#### Count of CAUSE

![](_page_7_Figure_2.jpeg)

Top 5 Cause Codes (2017)

110 Planned Outage/Maintenance 300 Material or Equipment Failure 400 Decay/Age of Material/Equipment 500 Lightning 600 Small Animal/Bird

8 of 25

### 5-Year System Performance

#### System Growth

| Year | % Distribution<br>Expansion | Overhead <sub>(miles)</sub> | Underground <sub>(miles)</sub> | Total <sub>(miles)</sub> | % Overhead | % Underground |
|------|-----------------------------|-----------------------------|--------------------------------|--------------------------|------------|---------------|
| 2017 | 1.25%                       | 346.30                      | 476.61                         | 822.90                   | 42.08%     | 57.91%        |
| 2016 | 3.12%                       | 353.61                      | 459.17                         | 812.78                   | 43.51%     | 56.49%        |
| 2015 | 4.52%                       | 344.98                      | 443.18                         | 788.16                   | 43.77%     | 56.23%        |

#### **Reliability Indices**

| Year | SAIFI | SAIDI | CAIDI | ASAI   | Total Customers |
|------|-------|-------|-------|--------|-----------------|
| 2017 | 0.80  | 60.12 | 74.91 | 99.99% | 53,355          |
| 2016 | 0.96  | 46.20 | 48.08 | 99.99% | 52,222          |
| 2015 | 0.84  | 50.32 | 60.08 | 99.99% | 51,240          |

#### Heat Map Analysis (System) Top 5 - 2017

![](_page_9_Figure_1.jpeg)

![](_page_9_Figure_2.jpeg)

#### System Performance

Energy Information Administration (2016 Final Data)

| Utility                                              | SAIFI <sub>2016</sub> | SAIDI <sub>2016</sub> | Customers |
|------------------------------------------------------|-----------------------|-----------------------|-----------|
| Denton Municipal Electric                            | 0.96                  | 46.20                 | 53,355    |
| National                                             | 1.23                  | 123.606               | N/A       |
| State of Texas                                       | 1.24                  | 122.82                | N/A       |
| Oncor Electric                                       | 1.43                  | 145.90                | DNR       |
| CoServ Electric                                      | 0.55                  | 34.510                | 209,866   |
| City of Garland (did not use IEEE 1366)              | 0.48                  | 20.36                 | 69,533    |
| City of Bryan (did not use IEEE 1366)                | 0.26                  | 17.47                 | 55,336    |
| City of Greenville (did not use IEEE 1366)           | 0.28                  | 10.10                 | 14,089    |
| City of Austin                                       | 0.72                  | 50.21                 | 453,000   |
| City of San Antonio                                  | 0.82                  | 57.401                | 767,821   |
| Average of Public Power Respondents (National)       | 1.23                  | 122.94                | N/A       |
| Average of Public Power Respondents (State of Texas) | 1.24                  | 122.91                | N/A       |
|                                                      |                       |                       | 11 of 25  |

#### 2017 Substation Performance (Worst to Best)

| Substation   | SAIDI   | CAIDI   | SAIFI | ASAI    | Performance | 2017 Rank | 2016 Rank |
|--------------|---------|---------|-------|---------|-------------|-----------|-----------|
| Denton North | 281.183 | 78.145  | 3.598 | 99.947% | 1011.764    | 16        | 7         |
| Kings Row    | 251.991 | 64.765  | 3.891 | 99.952% | 980.459     | 15        | 16        |
| Locust       | 352.743 | 139.445 | 2.530 | 99.933% | 892.307     | 14        | 9         |
| McKinney     | 111.159 | 33.958  | 3.273 | 99.979% | 363.865     | 13        | 15        |
| Teasley      | 126.826 | 66.452  | 1.909 | 99.976% | 242.050     | 12        | 11        |
| Cooper Creek | 91.119  | 43.752  | 2.083 | 99.983% | 189.769     | 11        | 4         |
| Fort Worth   | 99.017  | 77.854  | 1.272 | 99.981% | 125.933     | 10        | 8         |
| North Lakes  | 81.250  | 58.791  | 1.382 | 99.985% | 112.289     | 9         | 14        |
| Bonnie Brae  | 96.751  | 85.981  | 1.125 | 99.982% | 108.870     | 8         | 12        |
| Pockrus      | 68.115  | 51.718  | 1.317 | 99.987% | 89.711      | 7         | 6         |
| Hickory      | 68.509  | 78.787  | 0.870 | 99.987% | 59.571      | 6         | 10        |
| Arco         | 33.626  | 42.368  | 0.794 | 99.994% | 26.687      | 5         | 3         |
| Woodrow      | 22.218  | 65.867  | 0.337 | 99.995% | 7.495       | 4         | 1         |
| Jim Christal | 13.631  | 39.558  | 0.345 | 99.997% | 4.697       | 3         | 2         |
| Industrial   | 20.184  | 96.125  | 0.210 | 99.996% | 4.238       | 2         | 5         |
| R D Wells    | 9.642   | 84.707  | 0.114 | 99.998% | 1.097       | 1         | 13        |

#### 2017 Feeder Performance (10 Worst Performing)

| Feeder | SAIDI   | CAIDI   | SAIFI | ASAI    | Performance | 2017 Rank | 2016 Rank |
|--------|---------|---------|-------|---------|-------------|-----------|-----------|
| DN212  | 217.887 | 70.338  | 3.098 | 99.959% | 674.950     | 85        | 22        |
| MK211  | 96.106  | 31.870  | 3.016 | 99.982% | 289.816     | 84        | 75        |
| KR222  | 92.465  | 50.917  | 1.816 | 99.982% | 167.917     | 83        | 63        |
| LC221  | 230.971 | 346.366 | 0.667 | 99.956% | 154.021     | 82        | 65        |
| CC222  | 68.605  | 35.302  | 1.943 | 99.987% | 133.323     | 81        | 11        |
| KR212  | 97.704  | 72.524  | 1.347 | 99.981% | 131.626     | 80        | 74        |
| TS221  | 93.482  | 94.913  | 0.985 | 99.982% | 92.073      | 79        | 37        |
| LC223  | 56.025  | 61.949  | 0.904 | 99.989% | 50.667      | 78        | 64        |
| BB211  | 61.036  | 82.700  | 0.738 | 99.988% | 45.048      | 77        | 48        |
| DN213  | 62.014  | 133.611 | 0.464 | 99.988% | 28.783      | 76        | 62        |

#### 2017 10 Worst Performing Feeders Heat Map Analysis (Top 5 Cause & Equipment)

![](_page_13_Figure_1.jpeg)

#### 2017 Findings

The Top 5 Cause and Equipment Codes were identified as factors in over 60% of the recorded events at every service level (System, Substation, Feeder)
North Lakes Substation is the worst performing substation
Kings Row Substation has moved from the worst performing substation, but still has 2 of the 10 worst performing feeders

![](_page_15_Figure_1.jpeg)

![](_page_16_Figure_1.jpeg)

![](_page_17_Figure_1.jpeg)

![](_page_18_Figure_1.jpeg)

![](_page_19_Figure_1.jpeg)

![](_page_20_Figure_1.jpeg)

#### Video

![](_page_22_Picture_0.jpeg)

![](_page_22_Picture_1.jpeg)

An RP<sub>3</sub> designation signifies leadership in reliability, safety, workforce development and system improvement. It shows your commitment to keeping the lights on for your customers. An RP<sub>3</sub> designation can also indicate good financial health.

![](_page_22_Picture_3.jpeg)

![](_page_23_Picture_0.jpeg)

![](_page_23_Picture_1.jpeg)

An RP<sub>3</sub> designation signifies leadership in reliability, safety, workforce development and system improvement. It shows your commitment to keeping the lights on for your customers. An RP<sub>3</sub> designation can also indicate good financial health.

![](_page_23_Picture_3.jpeg)

#### \* "A RIVALRY FOR THE AGES" \* LINEWORKER VS. SQUIRREL

![](_page_24_Picture_1.jpeg)

## Questions?

Jerry Fielder, P.E. Division Engineering Manager - Distribution